Use a graphing calculator to complete \#1-7. Check that the mode is set to Func graphing and set your window so that $-6 \leq x \leq 6$ and $-5 \leq y \leq 5$ with a scale of 1 . Write the equation next to each graph, then label the coordinates of the x - and y-intercepts.

1. Graph the following equations on the same set of axes.

2. Sketch a graph of $\mathrm{y} \leq 4^{-\mathrm{x}}$. Don't forget a dashed/solid line and shading.

2. Sketch a graph of $y>-4^{x}$. Don't forget a dashed/solid line and shading.
\qquad
3. Graph the following equations on the same set of axes: $\mathrm{y}=3^{\mathrm{x}} \quad y=\left(\frac{1}{3}\right)^{x} y=-\left(\frac{1}{3}\right)^{x}$ | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
4. Graph the following equations on the same set of axes. $y=12^{x} \quad y=5^{x} \quad y=2^{x}$

7. Graph the following equations on the same set of axes. $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \quad \mathrm{y}=\ln x$
Note: $\ln x=$ natural \log of $x \quad($ base $=\mathrm{e})$

6. Graph the following equations on the same set of axes. $\mathrm{y}=10^{\mathrm{x}} \quad \mathrm{y}=\log x$

Note: $\log x=$ common \log of $x($ base $=10)$

Simplify the following WITHOUT A

 CALCULATOR. Clearly show all steps on the back of this paper.8. $\frac{2^{4}}{2^{-1}}$
9. $\left(3^{-1}+3^{-2}\right)^{-1}$
10. $729^{\frac{1}{3}}$
11. $\frac{27}{\frac{2}{3}}$
12. $2^{\frac{1}{2}} \cdot 12^{\frac{1}{2}}$
13. $16^{-\frac{1}{4}}$ 27^{3}
14. $81^{\frac{1}{2}}-81^{-\frac{1}{2}}$
15. $\left(3 \mathrm{x}^{2}\right)^{3}$
16. $\left(64 x^{6}\right)^{\frac{1}{3}}$
17. $\left(4 x^{4}\right)^{\frac{3}{2}}$

HINT: rewrite \#18-19 using like bases, then solve
18. solve for x : $27^{x+5}=243^{2 x-4}$
19. solve for x : $32^{x^{2}+4 x}=16^{x^{2}+4 x+3}$

Check answers for \#8-19:

$\begin{array}{lllllllllllll}-6 & 2 & 3 & 5 & 9 & 2 \sqrt{6} & 4 x^{2} & 8 x^{6} & 27 x^{6} & 32 & \frac{1}{2} & \frac{9}{4} & 8 \frac{8}{9}\end{array}$

